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Abstract. The increasing demand for new multimedia services requires the 
higher performance routers. The performance of Internet router highly depends 
on the efficiency of update operations as well as lookup operations on IP for-
warding table. While IP lookup schemes based on TCAM(Ternary Content Ad-
dressable Memory) can achieve high speed lookup, they usually need more 
complex update operations because of the ordering constraint on prefixes. In 
this paper we propose an efficient IP lookup architecture to provide fast update 
using a new type of TCAM named single-match TCAM. Also, we present 
elaborated algorithms to guarantee that each single-match TCAM generates at 
most one match for a given destination IP address. In our scheme the updating 
overhead can be reduced because there is no ordering constraint on the single-
match TCAM. We evaluate as well the update performance of our scheme 
through simulation under real forwarding tables and update data. 
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1   Introduction 

The qualities of wireless/mobile services as well as wired services highly rely on the 
performance of the Internet. A diversity of multimedia applications including mobile 
services has been explosively invented and the number of hosts and users has in-
creased on the Internet. Accordingly, Internet traffic has exponentially increased as 
well. To guarantee the service qualities under the growing Internet traffic, it is neces-
sary to improve remarkably the performance of the router which is a key element in 
the Internet.  

IP address lookup is one of the most important functions in Internet routers. In or-
der that a router forwards an incoming packet to its final destination, the router must 
determine the output port or the next hop address by looking up the matching prefix in 
the forwarding table based on the destination address of the packet. The IP lookup 
operation becomes more and more computationally intensive because the variable-
sized prefixes have been extensively employed since the advent of CIDR(Classless 
Inter-Domain Routing). Since several prefixes can be matched for a destination IP 
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address under the CIDR, the router has the burden to select the longest matching pre-
fix(LMP) as the best matching one. Therefore, the performance of the router strongly 
depends on the efficiency of the IP lookup operation. 

Many researchers have studied fast lookup schemes for the development of the 
high performance routers[1, 2]. Most of the schemes can be classified into software 
approaches based on trie and hardware approaches based on TCAM(Ternary Content 
Addressable Memory). Trie-based IP lookup schemes usually require several memory 
accesses per lookup and those accesses may be serialized. In contrast, TCAM can 
perform a lookup operation in a single cycle owing to its parallel access characteris-
tics. Therefore, TCAM have been paid much attention to in recent years. 

TCAM is a fully associative memory in which each memory cell can store a “don’t 
care” state in addition to 0’s and 1’s states. Thus, TCAM can look up variable-length 
prefixes for a given destination address. Because there may be several matches in an 
IP lookup operation, it is required to determine the best match, i.e., LMP. For the 
determination of the LMP, all prefixes of a TCAM needs to be ordered by some crite-
ria such as length, the ancestor-descendent relationship and level on the prefix search 
trie. Under the ordered circumstance a priority encoder can select the LMP on the 
uppermost location among all matched prefixes. 

The forwarding table in a router is frequently updated to avoid Internet instabil-
ity[3]. In particular, Internet backbone router should be able to deal with a few hun-
dred or thousand updates per second. Most of TCAM-based lookup schemes may 
experience several movements of prefix entries for a single update because the order-
ing must be maintained in the TCAMs. Therefore, frequent updates may consume 
many computation cycles in the IP lookup engine and result in the degradation of the 
lookup performance. The efficient update is one of the most important issues together 
with lookup performance and power management in TCAM-based schemes. 

In this paper, we present a new architecture to provide fast update by using single-
match TCAMs. Our elaborated algorithms guarantee that each single-match TCAM 
generates at most one match for a given destination address. So, it can eliminate both 
the ordering constraint and the priority encoder in a single-match TCAM, which 
makes the update fast. The rest of this paper is organized as follows. Related works on 
fast update of TCAM are described in section 2. In section 3 we propose our IP 
lookup architecture for fast update and describe the functionality of each component. 
In section 4 we present the algorithms for IP lookup, insertion and deletion of a prefix 
respectively. The performance of the proposed scheme is evaluated in section 5. Fi-
nally, we conclude this paper in section 6. 

2   Related Works 

Several methods have been proposed to reduce the updating overhead. Shah and 
Gupta[4] proposed the two fast updating algorithms which are PLO_OPT and 
CAO_OPT, to reduce the number of memory movements during update. In 
PLO_OPT all the existing prefixes are sorted by their lengths and free locations are 
reserved in the middle of the table. Then the number of memory movements per up-
date is no more than L/2 where L is the maximum prefix length, i.e., 32 in IPv4. 
CAO_OPT exploits the fact that the ordering needs to be maintained only between 
two prefixes one of which is the prefix of the other. In this algorithm the ordering is 
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referred to as the chain-ancestor ordering(CAO) where a chain means the collection 
of the prefixes on the path from the root to a leaf node in a prefix search trie. In 
CAO_OPT the worst case number of memory movements per update has been re-
duced to D/2 where D is the maximum length of chains. 

Wu et al.[5] presented an update algorithm based on the prefix level. A forwarding 
table is divided into several partitions according to the levels in a prefix search trie 
and the partitions are ordered by its level. Each partition includes free space for future 
update. A new prefix can be easily inserted if its parent and children are in different 
level partition. However, the free space may contain prefixes of different levels within 
the free space as update proceeds by means of that algorithm. It will cause the mem-
ory movements as in the CAO_OPT. In case of deletion it leaves the deleted space as 
unavailable, so it wastes memory severely. Moreover, it is difficult to predetermine 
the size of each free space because the distribution of updates cannot be estimated in 
advance.  

Several approaches have been researched to remove both the ordering constraint 
and the priority encoder module. Kobayashi et al.[6] modified TCAM by adding ver-
tical OR circuits in the mask column to directly select the longest mask among the 
matched entries without priority encoder logic. It does not require any ordering con-
straint, so fast update can be achieved. Actual lookup delay may be increased due to 
the vertical ORing, even though the delay time can be reduced by pipelining tech-
nique. Ng and Lee[7] partitioned a forwarding table into several TCAM modules so 
that each module only contains prefixes with the same output port number. A new 
prefix can be inserted at any location within a TCAM module without considering the 
ordering. However, many updates just change the output port numbers of the existing 
prefixes. Such updates lead to excessive memory movements because the prefix must 
be moved to another module associated with new output port. 

3   Proposed IP Lookup Architecture 

3.1   Conventional TCAM-Based Architecture 

Conventional TCAM-based IP lookup architecture consists of a TCAM, a conven-
tional data memory and a priority encoder as shown in Fig. 1. For a given destination 
IP address, there are possibly multiple matches in the TCAM and the priority encoder 
selects one final matched entry among those matches. The entry in the data memory 
which corresponds to the final matched entry of the TCAM contains target output port 
number. Using the output port number the packet can be delivered to the target port. 
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Fig. 1. Conventional TCAM-based IP Lookup Architecture 
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Since the priority encoder selects the final match among several matches by means 
of their location, the prefixes in the TCAM should be ordered so that the longest pre-
fix always locates prior to the other matched prefixes. 

For example, let’s consider the sample forwarding table with 10 prefixes as shown 
in Fig. 2. Those prefixes can be stored in partial order of p1, {p2, p3}, {p4, p5, p6}, {p7, 
p8, p9}, p10, in which prefix entries within a brace can be located in any order. If an 8-
bit destination address 10100100 is given, then two prefixes p1=10100* and p8=10* 
are matched. Because the prefix p1 is located prior to the prefix p8 in the TCAM, the 
priority encoder can select the prefix p1 as the LMP. The output port 10 of the corre-
sponding entry in SRAM can be found. 

 
Entry Prefix Length Port Entry Prefix Length Port 

p1 10100* 5 10 P6 110* 3 14 
p2 1011* 4 11 P7 00* 2 15 
p3 1110* 4 11 P8 10* 2 16 
P4 010* 3 13 P9 11* 2 17 
P5 100* 3 14 p10 0* 1 18 

Fig. 2. A Simple Example of Forwarding Table 

3.2   Design of the Proposed Architecture 

The maximum number of matched entries in a TCAM depends on the maximum 
depth of levels of the prefix search trie. For a given destination IP address, the pre-
fixes which have ancestor-descendant relation will be matched simultaneously. The 
depth of a prefix search trie currently does not exceed 7 even including the default 
prefix so there can be at most 7 matches. If the forwarding table is partitioned into 
several TCAMs so that there is no ancestor-descendant relation in each partitioned 
TCAM, then it is guaranteed that there exists at most one match in each TCAM. It 
means that the TCAMs do not need a priority encoder any more. In section 4 we will 
describe how to satisfy such single-match condition when prefixes are inserted to 
TCAMs. 

Fig. 3 shows our proposed architecture for IP lookup. It consists of 8 partitioned 
TCAMs and selection logic. Each of TCAMs has supplementary SRAMs which con-
tain the lengths of prefixes and output port numbers. Note that TCAM0 to TCAM6 
don’t have any priority encoder logic whereas the last TCAM7 has the priority en-
coder. The TCAM7 is similar to the TCAM with a priority encoder used in conven-
tional IP lookup architecture. 

3.3   Single-Match TCAMs 

In order to describe our single-match TCAMs, we define the terminologies which are 
disjoint and disjoint set as follows. Those are similarly defined in several literatures 
including [8]. 
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Fig. 3. Proposed IP Lookup Architecture 

Definition 1. Two prefixes pi and pj are disjoint if neither pi is the prefix of pj nor pj is 
the prefix of pi. 
 
For example, p1=10100* and p2 = 1011* of Fig. 2 are disjoint because neither p2 can 
be a prefix of p1, nor p1 can be a prefix of p2. However, p8 = 10* and p2 are not dis-
joint because p8 is a prefix of p2. 
 
Definition 2. A set of prefixes P is the disjoint set if any two pi, pj ∈ P are disjoint. 
 
Each of TCAM0 to TCAM6 should contain a disjoint set of prefixes, i.e., any prefixes 
in each TCAM are disjoint each other. So the result of lookup for a given IP address 
will be no more than one match in each TCAM. We call such TCAMs “single-match” 
TCAMs. Obviously, the single-match TCAMs don’t have priority encoder logic. 

The prefixes in a forwarding table are partitioned into several disjoint sets and each 
set is mapped onto a single-match TCAM. There is at most one match in each TCAM. 
Although our architecture has a conventional TCAM, the conventional TCAM will 
generate one final match through the priority encoder. The selection logic selects 
longest one among those matches by using length data. The selection logic finally 
sends out the corresponding output port number. 

Since any prefixes which are in ancestor-descendant relation in a prefix search trie 
are certainly not disjoint, the depth of a prefix search trie is the minimum number of 
disjoint sets which is sufficient to be the number of single-match TCAMs needed. 
However, we need a conventional TCAM additionally in our architecture except the 
single-match TCAMs. The rationale for the conventional TCAM is related to the fact 
that the disjoint sets will be varied through several updates and it is hard to re-map 
those sets into single-match TCAMs by online algorithm without burden. Each single-
match TCAM may be required to move the existing prefixes to another single-match 
TCAM in order to maintain a disjoint set when it inserts a new prefix. For example, 
suppose that there are only two single-match TCAMs and two disjoint prefixes 
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p1=10100* and p2 = 1011* are stored in different single-match TCAMs, then there is 
no way to insert a new prefix, p8=10* into any of the single-match TCAMs without 
moving an existing prefix. Movements of existing prefixes are not desirable for fast 
updating, so we resolve the problem by providing an additional TCAM which is a 
conventional TCAM with a priority encoder. In case that there is no suitable single-
match TCAM for a new inserting prefix, the conventional TCAM will be assigned. 
Since the conventional TCAM has a priority encoder, any new prefix can be inserted 
regardless of whether it is disjoint with the existing prefixes.  

While the prefixes of the conventional TCAM need to be ordered, the prefixes of 
the single-match TCAMs do not. So, both insertion and deletion can be performed 
faster in the single-match TCAMs than in the conventional one. In section 5, the ex-
periment result shows that most of prefixes are stored in the single-match TCAMs and 
very small amount of prefixes are in the conventional TCAMs. 

4   IP Lookup and Update Algorithms 

In this section, we describe an IP lookup algorithm to search for the LMP and also 
present update algorithms for inserting a new prefix into an appropriate TCAM and 
deleting a prefix. 

4.1   Search Algorithm 

Fig. 4 shows the algorithm to search for the LMP with a destination IP address, 
ip_addr as a key. Each TCAM independently performs line 2. In line 2, at most one 
matching prefix is found using the function match(TCAMi, ip_addr). In case that 
there is no matching prefix in TCAMi, entry[i].length becomes 0. Line 4 is performed 
by the selection logic. After it selects the TCAM containing the LMP, the correspond-
ing output port number will be returned (line 5). 

 
Search(ip_addr: an ip address) 
1. for i ← 0 to 7 do in parallel 
2.  entry[i] ← match(TCAMi, ip_addr) 
3. endfor 
4. Find k such that entry[k].length is the largest one 
      among  entry[i].length for all 0≤i≤7 
5. return entry[k].output_port 

Fig. 4. Search Algorithm for LMP 

For example, the prefixes of Fig. 2 can constitute disjoint sets for TCAM0 to 
TCAM6 which are {p1, p7}, {p2, p4}, {p3}, {p5}, {p6}, {p10, p8}, {p9}, respectively. If 
an 8-bit destination address 10100100 is given, then only TCAM0 and TCAM5 con-
tain the matched prefixes p1=10100* and p8=10*, respectively. So, entry[0] and en-
try[5] are set by the location of p1 in TCAM0 and that of p8 in TCAM5, respectively. 
Unless conventional TCAM7 contains the matching prefix whose length is longer than 
5 of p1’s length, the algorithm in Fig. 4 returns the value 10 of entry[0].output_port 
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4.2   Insertion Algorithm 

Fig. 5 describes an algorithm to insert a new prefix p to a forwarding table. As shown 
in lines 1 to 6, it finds out all available single-match TCAMs to which the new prefix 
can be inserted. Such a TCAM satisfies that the new prefix p and every prefix ep in 
the TCAM should be disjoint and there should be at least one free slot in the TCAM 
(lines 3). 

 
Insert(p: a prefix) 
1. for i ← 0 to 6 do in parallel 
2.  Initialize available[i] ← false  
3.  if ((p and ep are disjoint, ∀prefix ep∈TCAMi)&&  
    (there is some free space in TCAMi)) 
4.      available[i] ← true 
5.  endif 
6. endfor 
7. if (available[i] = false, ∀i 0≤i≤6)  
8.  insert_to_tcam(p, TCAM7) 
9. else 
10.  k is randomly selected from available[i] 
11.  insert_to_stcam(p, TCAMk) 
12. endif 

Fig. 5. Insertion Algorithm 

For example, assume that the new prefix 101* is inserted under the same condi-
tions as the example of section 4.1. Then, the prefix 101* isn’t disjoint with 
p1=10100*, p2=1011* and p8=10* which are in TCAM0, TCAM1, and TCAM5, re-
spectively. Consequently, available[0], available[1] and available[5] keep the false 
value. On the other hand, every prefix in TCAM2, TCAM3, TCAM4 and TCAM6 is  
disjoint with the new prefix 101*. Therefore, one of these TCAMs is randomly se-
lected for insertion, if it has free space. As another example, assuming the new prefix 
is 1*, the prefix 1* is not disjoint with at least one prefix in each of TCAM0, to 
TCAM6. and the prefix should be inserted in TCAM7.  

It is easily determined if there is any non-disjoint prefix in a TCAM with respect to 
the new prefix. Given a 32-bit IP address TCAM searches for matched prefix in a 
normal lookup operation. We can give the TCAM a prefix as a search key instead of a 
full 32-bit IP address. If there is any non-disjoint prefix in the TCAM with respect to 
the prefix, match will occur in that operation. There is a simple technique to regard a 
prefix as a search key by considering the remaining bits of the prefix in 32-bit repre-
sentation as don’t care conditions[8]. 

If there is no available single-match TCAM in line 7 of Fig. 5, the new prefix must 
be inserted into TCAM7 which is the conventional TCAM. Otherwise, the new prefix 
can be inserted into a TCAM randomly chosen from the available single-match 
TCAMs. The function insert_to_tcam() inserts the prefix p to the conventional TCAM 
with satisfying the ordering constraint. That functionality can be implemented by 
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applying one of various update algorithms for the conventional TCAM. The in-
sert_to_stcam() can simply inserts the prefix p into any free location in a single-match 
TCAM irrespective of the ordering.  

4.3   Deletion Algorithm 

The algorithm to delete a prefix p from the forwarding table is shown in Fig. 6. For 
the prefix deletion it is needed to determine which TCAM contains the prefix p as 
shown in line 1. Then the prefix can be deleted from the TCAM (line 2). Actually the 
both steps (lines 1 and 2) can be performed together. The function delete_from() is 
performed differently whether it operates on conventional TCAM or single-match 
TCAM.  

We manage contiguous free space for single-match TCAM, which causes one 
memory movement on deletion. However, it does not need any other memory move-
ments because there is no ordering constraint on single-match TCAM. In case of 
conventional TCAM the number of memory movements differs according to update 
algorithms. Assuming free space is contiguous in the conventional TCAM, it also 
requires at least one memory movement on deletion.  

 
Delete(p: a prefix) 
1. Find k such that p ∈ TCAMk  
2. delete_from(p, TCAMk) 

Fig. 6. Deletion Algorithm 

5    Performance Evaluation 

5.1   Simulation Environment 

In our simulation we used routing tables from Route Views[9]. The update data 
streams for 4 weeks were used for the experiment where the data of each week were 
separately taken from different months. For experiment we needed to convert the 
routing tables into forwarding tables and filter the update data streams for the for-
warding tables. Table 1 shows statistics on the forwarding table and the update data 
streams. 

Table 1. Statistics of Sampling Data 

  Jul 2007 Aug 2007 Sep 2007 Oct 2007 
No. of Prefixes 243511  244095  242635  248389  
No. of Updates 164467  527204  787944  651771  

 
The number of updates only includes the number of insertions and deletions but 

not that of modifications of output port number. We evaluate the updating perform-
ance just by the number of memory movements incurred by updates, but the modifi-
cation of the output port does not cause the memory movements. 
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Table 2 shows the number of memory movements per update in various updating 
schemes. Since there is no ordering constraint on single-match TCAM, the actual 
number of memory movements incurred by each update may be 0. However, we 
adopted a policy that free space of TCAM should be contiguous, so any deleted space 
needs to be compacted to the contiguous free space. It causes almost one memory 
movement per deletion on the average. In Table 2 the column represented by sTCAM 
shows the number of memory movements in single-match TCAM. The other columns 
show those for various updating schemes in conventional TCAM, which are summa-
rized in [4]. 

Table 2. Comparison of Memory Movements 

TCAM Memory 
 Movements 

sTCAM
L-algorithm PLO_OPT CAO_OPT 

Insertion 0 
Deletion 1 

7.27 4.1 1.02 

5.2   Simulation Results 

Table 3 shows the average number of memory movements per update in our scheme. 
Each prefix in the forwarding table is randomly assigned to a single-match TCAM 
unless that prefix is not disjoint with any prefix in the TCAM. If an update occurs in 
single-match TCAM and the update is deletion, then the number of memory move-
ment is calculated as one. But, if the update is insertion, there is no memory move-
ment in single-match TCAM. In case of conventional TCAM, CAO_OPT was applied 
to evaluating the number of memory movements. Note that the effective update cost 
is cheaper in single-match TCAM than in conventional TCAM. In our scheme the 
average number of memory movements per update ranges from 0.4902 to 0.5061, 
which is half as large as CAO_OPT.  

Table 3. Memory Movements per Update 

Mem. Movements Jul 2007 Aug 2007 Sep 2007 Oct 2007 
Moves/Update 0.4902 0.5061 0.4954 0.4965 

 
Fig. 7 shows the number of prefixes initially contained in each TCAM. The single-

match TCAM is randomly chosen, so the prefixes can be evenly distributed among 
the single-match TCAMs. The number of prefixes in conventional TCAM is very 
small and merely 821, which is 0.33% of total prefixes. It implies that the conven-
tional TCAM which requires the ordering constraint can be constructed as very small 
size in our architecture. 

The good updating performance is due to the fact that most of updates are per-
formed in single-match TCAMs and very few updates are performed in conventional 
TCAM. Fig. 8 shows the distribution of updates over TCAMs. Most of updates con-
centrate on single-match TCAMs and are evenly distributed among the single-match 
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Fig. 7. The Number of Initial Prefixes in Each TCAM 
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Fig. 8. Insertions and Deletions 

TCAMs as well. The numbers of insertions and deletions in conventional TCAM are 
merely 156 and 148, which correspond to 0.19% and 0.18% of total insertions and 
deletions respectively. The insertion ratio, 0.19%, is much smaller than the ratio of the 
number of initial prefixes, 0.33%, in the conventional TCAM, which implies the rela-
tive portion of the conventional TCAM will not increase. 

5.3   Discussion 

The updating performance is related to two factors: the number of updates in the con-
ventional TCAM and the number of deletions in the single-match TCAMs. In case of 
single-match TCAM the memory movements are only incurred by deletions while 
both insertions and deletions incur memory movements in the conventional TCAM. 

The smaller the number of updates in the conventional TCAM is, the better updat-
ing performance is achieved. The simulation results show that the number of updates 
in the conventional TCAM is quite small. In the simulation a simple random assign-
ment strategy was applied to the insertion algorithm, however, it is possible to apply 
various assignment strategies to the insertion algorithm. It is expected that the number 
of prefixes and updates in the conventional TCAM will be affected by the assignment 
strategies. 
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The number of single-match TCAMs may be controlled depending on cost and per-
formance. It is also expected that even if the number of single-match TCAMs is re-
duced, the performance will not be rapidly degraded because large amount of prefixes 
can reside in small number of disjoint sets. 

6   Conclusion 

The conventional TCAM must satisfy some ordering constraint on prefixes for long-
est prefix matching. It results in low updating performance of the TCAM and even 
lookup performance would be low due to overhead of a priority encoder.  

Our novel architecture shows good performance in updating by introducing a new 
type of TCAMs so called single-match TCAMs which do not need any priority en-
coder logic. By using an elaborated assignment strategy to insert a new prefix, each 
single-match TCAM can maintain a disjoint set of prefixes and produce at most one 
match. Since it does not require any ordering constraint on each single-match TCAM, 
a newly inserted prefix can be located at any place within a single-match TCAM. It is 
expected that lookup will also spend less time than in the conventional TCAM be-
cause it does not have a priority encoder. 

Although the proposed architecture still requires a conventional TCAM, our simu-
lation result shows that the number of prefixes which reside in the conventional 
TCAM is very small. As the result very few updates are performed in the conven-
tional TCAM and the average number of memory movements per update is as small 
as about 0.5. 

Novel assignment strategies for prefix insertion should be developed and evaluated 
in further research. The memory movements on deletions in single-match TCAM can 
be eliminated provided that the insertion hardware is enhanced. The design of the 
hardware to eliminate memory movements also remains for future work. 
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