
J. Harju et al. (Eds.): WWIC 2008, LNCS 5031, pp. 104–114, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Efficient IP Lookup Architecture with Fast Update
Using Single-Match TCAMs∗

Jinsoo Kim and Junghwan Kim∗∗

Department of Computer Science, Konkuk University,
322 Danwol-dong, Chungju-si, Chungbuk 380-701, Korea

{jinsoo,jhkim}@kku.ac.kr

Abstract. The increasing demand for new multimedia services requires the
higher performance routers. The performance of Internet router highly depends
on the efficiency of update operations as well as lookup operations on IP for-
warding table. While IP lookup schemes based on TCAM(Ternary Content Ad-
dressable Memory) can achieve high speed lookup, they usually need more
complex update operations because of the ordering constraint on prefixes. In
this paper we propose an efficient IP lookup architecture to provide fast update
using a new type of TCAM named single-match TCAM. Also, we present
elaborated algorithms to guarantee that each single-match TCAM generates at
most one match for a given destination IP address. In our scheme the updating
overhead can be reduced because there is no ordering constraint on the single-
match TCAM. We evaluate as well the update performance of our scheme
through simulation under real forwarding tables and update data.

Keywords: Internet router, single-match TCAM, IP lookup, fast update.

1 Introduction

The qualities of wireless/mobile services as well as wired services highly rely on the
performance of the Internet. A diversity of multimedia applications including mobile
services has been explosively invented and the number of hosts and users has in-
creased on the Internet. Accordingly, Internet traffic has exponentially increased as
well. To guarantee the service qualities under the growing Internet traffic, it is neces-
sary to improve remarkably the performance of the router which is a key element in
the Internet.

IP address lookup is one of the most important functions in Internet routers. In or-
der that a router forwards an incoming packet to its final destination, the router must
determine the output port or the next hop address by looking up the matching prefix in
the forwarding table based on the destination address of the packet. The IP lookup
operation becomes more and more computationally intensive because the variable-
sized prefixes have been extensively employed since the advent of CIDR(Classless
Inter-Domain Routing). Since several prefixes can be matched for a destination IP

∗ This work was supported by Konkuk University.
∗∗ Corresponding author.

 An Efficient IP Lookup Architecture with Fast Update 105

address under the CIDR, the router has the burden to select the longest matching pre-
fix(LMP) as the best matching one. Therefore, the performance of the router strongly
depends on the efficiency of the IP lookup operation.

Many researchers have studied fast lookup schemes for the development of the
high performance routers[1, 2]. Most of the schemes can be classified into software
approaches based on trie and hardware approaches based on TCAM(Ternary Content
Addressable Memory). Trie-based IP lookup schemes usually require several memory
accesses per lookup and those accesses may be serialized. In contrast, TCAM can
perform a lookup operation in a single cycle owing to its parallel access characteris-
tics. Therefore, TCAM have been paid much attention to in recent years.

TCAM is a fully associative memory in which each memory cell can store a “don’t
care” state in addition to 0’s and 1’s states. Thus, TCAM can look up variable-length
prefixes for a given destination address. Because there may be several matches in an
IP lookup operation, it is required to determine the best match, i.e., LMP. For the
determination of the LMP, all prefixes of a TCAM needs to be ordered by some crite-
ria such as length, the ancestor-descendent relationship and level on the prefix search
trie. Under the ordered circumstance a priority encoder can select the LMP on the
uppermost location among all matched prefixes.

The forwarding table in a router is frequently updated to avoid Internet instabil-
ity[3]. In particular, Internet backbone router should be able to deal with a few hun-
dred or thousand updates per second. Most of TCAM-based lookup schemes may
experience several movements of prefix entries for a single update because the order-
ing must be maintained in the TCAMs. Therefore, frequent updates may consume
many computation cycles in the IP lookup engine and result in the degradation of the
lookup performance. The efficient update is one of the most important issues together
with lookup performance and power management in TCAM-based schemes.

In this paper, we present a new architecture to provide fast update by using single-
match TCAMs. Our elaborated algorithms guarantee that each single-match TCAM
generates at most one match for a given destination address. So, it can eliminate both
the ordering constraint and the priority encoder in a single-match TCAM, which
makes the update fast. The rest of this paper is organized as follows. Related works on
fast update of TCAM are described in section 2. In section 3 we propose our IP
lookup architecture for fast update and describe the functionality of each component.
In section 4 we present the algorithms for IP lookup, insertion and deletion of a prefix
respectively. The performance of the proposed scheme is evaluated in section 5. Fi-
nally, we conclude this paper in section 6.

2 Related Works

Several methods have been proposed to reduce the updating overhead. Shah and
Gupta[4] proposed the two fast updating algorithms which are PLO_OPT and
CAO_OPT, to reduce the number of memory movements during update. In
PLO_OPT all the existing prefixes are sorted by their lengths and free locations are
reserved in the middle of the table. Then the number of memory movements per up-
date is no more than L/2 where L is the maximum prefix length, i.e., 32 in IPv4.
CAO_OPT exploits the fact that the ordering needs to be maintained only between
two prefixes one of which is the prefix of the other. In this algorithm the ordering is

106 J. Kim and J. Kim

referred to as the chain-ancestor ordering(CAO) where a chain means the collection
of the prefixes on the path from the root to a leaf node in a prefix search trie. In
CAO_OPT the worst case number of memory movements per update has been re-
duced to D/2 where D is the maximum length of chains.

Wu et al.[5] presented an update algorithm based on the prefix level. A forwarding
table is divided into several partitions according to the levels in a prefix search trie
and the partitions are ordered by its level. Each partition includes free space for future
update. A new prefix can be easily inserted if its parent and children are in different
level partition. However, the free space may contain prefixes of different levels within
the free space as update proceeds by means of that algorithm. It will cause the mem-
ory movements as in the CAO_OPT. In case of deletion it leaves the deleted space as
unavailable, so it wastes memory severely. Moreover, it is difficult to predetermine
the size of each free space because the distribution of updates cannot be estimated in
advance.

Several approaches have been researched to remove both the ordering constraint
and the priority encoder module. Kobayashi et al.[6] modified TCAM by adding ver-
tical OR circuits in the mask column to directly select the longest mask among the
matched entries without priority encoder logic. It does not require any ordering con-
straint, so fast update can be achieved. Actual lookup delay may be increased due to
the vertical ORing, even though the delay time can be reduced by pipelining tech-
nique. Ng and Lee[7] partitioned a forwarding table into several TCAM modules so
that each module only contains prefixes with the same output port number. A new
prefix can be inserted at any location within a TCAM module without considering the
ordering. However, many updates just change the output port numbers of the existing
prefixes. Such updates lead to excessive memory movements because the prefix must
be moved to another module associated with new output port.

3 Proposed IP Lookup Architecture

3.1 Conventional TCAM-Based Architecture

Conventional TCAM-based IP lookup architecture consists of a TCAM, a conven-
tional data memory and a priority encoder as shown in Fig. 1. For a given destination
IP address, there are possibly multiple matches in the TCAM and the priority encoder
selects one final matched entry among those matches. The entry in the data memory
which corresponds to the final matched entry of the TCAM contains target output port
number. Using the output port number the packet can be delivered to the target port.

prefix

P
rio

rit
y

En
co

de
r

TCAM SRAM

output
portIP

address

Fig. 1. Conventional TCAM-based IP Lookup Architecture

 An Efficient IP Lookup Architecture with Fast Update 107

Since the priority encoder selects the final match among several matches by means
of their location, the prefixes in the TCAM should be ordered so that the longest pre-
fix always locates prior to the other matched prefixes.

For example, let’s consider the sample forwarding table with 10 prefixes as shown
in Fig. 2. Those prefixes can be stored in partial order of p1, {p2, p3}, {p4, p5, p6}, {p7,
p8, p9}, p10, in which prefix entries within a brace can be located in any order. If an 8-
bit destination address 10100100 is given, then two prefixes p1=10100* and p8=10*
are matched. Because the prefix p1 is located prior to the prefix p8 in the TCAM, the
priority encoder can select the prefix p1 as the LMP. The output port 10 of the corre-
sponding entry in SRAM can be found.

Entry Prefix Length Port Entry Prefix Length Port

p1 10100* 5 10 P6 110* 3 14
p2 1011* 4 11 P7 00* 2 15
p3 1110* 4 11 P8 10* 2 16
P4 010* 3 13 P9 11* 2 17
P5 100* 3 14 p10 0* 1 18

Fig. 2. A Simple Example of Forwarding Table

3.2 Design of the Proposed Architecture

The maximum number of matched entries in a TCAM depends on the maximum
depth of levels of the prefix search trie. For a given destination IP address, the pre-
fixes which have ancestor-descendant relation will be matched simultaneously. The
depth of a prefix search trie currently does not exceed 7 even including the default
prefix so there can be at most 7 matches. If the forwarding table is partitioned into
several TCAMs so that there is no ancestor-descendant relation in each partitioned
TCAM, then it is guaranteed that there exists at most one match in each TCAM. It
means that the TCAMs do not need a priority encoder any more. In section 4 we will
describe how to satisfy such single-match condition when prefixes are inserted to
TCAMs.

Fig. 3 shows our proposed architecture for IP lookup. It consists of 8 partitioned
TCAMs and selection logic. Each of TCAMs has supplementary SRAMs which con-
tain the lengths of prefixes and output port numbers. Note that TCAM0 to TCAM6
don’t have any priority encoder logic whereas the last TCAM7 has the priority en-
coder. The TCAM7 is similar to the TCAM with a priority encoder used in conven-
tional IP lookup architecture.

3.3 Single-Match TCAMs

In order to describe our single-match TCAMs, we define the terminologies which are
disjoint and disjoint set as follows. Those are similarly defined in several literatures
including [8].

108 J. Kim and J. Kim

TCAM0
SRAM
5 bits X k

SRAM
m bits X k

TCAM1
SRAM
5 bits X k

SRAM
m bits X k

8 X 1
Selection

Logic

m

5

m

prefix length output port

TCAM6
SRAM
5 bits X k

SRAM
m bits X k

TCAM7
SRAM

5 bits X n
SRAM
m bits X nP

E

TCAM0 ~ TCAM6 : single-match TCAMs
TCAM7 : conventional TCAM

Fig. 3. Proposed IP Lookup Architecture

Definition 1. Two prefixes pi and pj are disjoint if neither pi is the prefix of pj nor pj is
the prefix of pi.

For example, p1=10100* and p2 = 1011* of Fig. 2 are disjoint because neither p2 can
be a prefix of p1, nor p1 can be a prefix of p2. However, p8 = 10* and p2 are not dis-
joint because p8 is a prefix of p2.

Definition 2. A set of prefixes P is the disjoint set if any two pi, pj ∈ P are disjoint.

Each of TCAM0 to TCAM6 should contain a disjoint set of prefixes, i.e., any prefixes
in each TCAM are disjoint each other. So the result of lookup for a given IP address
will be no more than one match in each TCAM. We call such TCAMs “single-match”
TCAMs. Obviously, the single-match TCAMs don’t have priority encoder logic.

The prefixes in a forwarding table are partitioned into several disjoint sets and each
set is mapped onto a single-match TCAM. There is at most one match in each TCAM.
Although our architecture has a conventional TCAM, the conventional TCAM will
generate one final match through the priority encoder. The selection logic selects
longest one among those matches by using length data. The selection logic finally
sends out the corresponding output port number.

Since any prefixes which are in ancestor-descendant relation in a prefix search trie
are certainly not disjoint, the depth of a prefix search trie is the minimum number of
disjoint sets which is sufficient to be the number of single-match TCAMs needed.
However, we need a conventional TCAM additionally in our architecture except the
single-match TCAMs. The rationale for the conventional TCAM is related to the fact
that the disjoint sets will be varied through several updates and it is hard to re-map
those sets into single-match TCAMs by online algorithm without burden. Each single-
match TCAM may be required to move the existing prefixes to another single-match
TCAM in order to maintain a disjoint set when it inserts a new prefix. For example,
suppose that there are only two single-match TCAMs and two disjoint prefixes

 An Efficient IP Lookup Architecture with Fast Update 109

p1=10100* and p2 = 1011* are stored in different single-match TCAMs, then there is
no way to insert a new prefix, p8=10* into any of the single-match TCAMs without
moving an existing prefix. Movements of existing prefixes are not desirable for fast
updating, so we resolve the problem by providing an additional TCAM which is a
conventional TCAM with a priority encoder. In case that there is no suitable single-
match TCAM for a new inserting prefix, the conventional TCAM will be assigned.
Since the conventional TCAM has a priority encoder, any new prefix can be inserted
regardless of whether it is disjoint with the existing prefixes.

While the prefixes of the conventional TCAM need to be ordered, the prefixes of
the single-match TCAMs do not. So, both insertion and deletion can be performed
faster in the single-match TCAMs than in the conventional one. In section 5, the ex-
periment result shows that most of prefixes are stored in the single-match TCAMs and
very small amount of prefixes are in the conventional TCAMs.

4 IP Lookup and Update Algorithms

In this section, we describe an IP lookup algorithm to search for the LMP and also
present update algorithms for inserting a new prefix into an appropriate TCAM and
deleting a prefix.

4.1 Search Algorithm

Fig. 4 shows the algorithm to search for the LMP with a destination IP address,
ip_addr as a key. Each TCAM independently performs line 2. In line 2, at most one
matching prefix is found using the function match(TCAMi, ip_addr). In case that
there is no matching prefix in TCAMi, entry[i].length becomes 0. Line 4 is performed
by the selection logic. After it selects the TCAM containing the LMP, the correspond-
ing output port number will be returned (line 5).

Search(ip_addr: an ip address)
1. for i ← 0 to 7 do in parallel
2. entry[i] ← match(TCAMi, ip_addr)
3. endfor
4. Find k such that entry[k].length is the largest one
 among entry[i].length for all 0≤i≤7
5. return entry[k].output_port

Fig. 4. Search Algorithm for LMP

For example, the prefixes of Fig. 2 can constitute disjoint sets for TCAM0 to
TCAM6 which are {p1, p7}, {p2, p4}, {p3}, {p5}, {p6}, {p10, p8}, {p9}, respectively. If
an 8-bit destination address 10100100 is given, then only TCAM0 and TCAM5 con-
tain the matched prefixes p1=10100* and p8=10*, respectively. So, entry[0] and en-
try[5] are set by the location of p1 in TCAM0 and that of p8 in TCAM5, respectively.
Unless conventional TCAM7 contains the matching prefix whose length is longer than
5 of p1’s length, the algorithm in Fig. 4 returns the value 10 of entry[0].output_port

110 J. Kim and J. Kim

4.2 Insertion Algorithm

Fig. 5 describes an algorithm to insert a new prefix p to a forwarding table. As shown
in lines 1 to 6, it finds out all available single-match TCAMs to which the new prefix
can be inserted. Such a TCAM satisfies that the new prefix p and every prefix ep in
the TCAM should be disjoint and there should be at least one free slot in the TCAM
(lines 3).

Insert(p: a prefix)
1. for i ← 0 to 6 do in parallel
2. Initialize available[i] ← false
3. if ((p and ep are disjoint, ∀prefix ep∈TCAMi)&&
 (there is some free space in TCAMi))
4. available[i] ← true
5. endif
6. endfor
7. if (available[i] = false, ∀i 0≤i≤6)
8. insert_to_tcam(p, TCAM7)
9. else
10. k is randomly selected from available[i]
11. insert_to_stcam(p, TCAMk)
12. endif

Fig. 5. Insertion Algorithm

For example, assume that the new prefix 101* is inserted under the same condi-
tions as the example of section 4.1. Then, the prefix 101* isn’t disjoint with
p1=10100*, p2=1011* and p8=10* which are in TCAM0, TCAM1, and TCAM5, re-
spectively. Consequently, available[0], available[1] and available[5] keep the false
value. On the other hand, every prefix in TCAM2, TCAM3, TCAM4 and TCAM6 is
disjoint with the new prefix 101*. Therefore, one of these TCAMs is randomly se-
lected for insertion, if it has free space. As another example, assuming the new prefix
is 1*, the prefix 1* is not disjoint with at least one prefix in each of TCAM0, to
TCAM6. and the prefix should be inserted in TCAM7.

It is easily determined if there is any non-disjoint prefix in a TCAM with respect to
the new prefix. Given a 32-bit IP address TCAM searches for matched prefix in a
normal lookup operation. We can give the TCAM a prefix as a search key instead of a
full 32-bit IP address. If there is any non-disjoint prefix in the TCAM with respect to
the prefix, match will occur in that operation. There is a simple technique to regard a
prefix as a search key by considering the remaining bits of the prefix in 32-bit repre-
sentation as don’t care conditions[8].

If there is no available single-match TCAM in line 7 of Fig. 5, the new prefix must
be inserted into TCAM7 which is the conventional TCAM. Otherwise, the new prefix
can be inserted into a TCAM randomly chosen from the available single-match
TCAMs. The function insert_to_tcam() inserts the prefix p to the conventional TCAM
with satisfying the ordering constraint. That functionality can be implemented by

 An Efficient IP Lookup Architecture with Fast Update 111

applying one of various update algorithms for the conventional TCAM. The in-
sert_to_stcam() can simply inserts the prefix p into any free location in a single-match
TCAM irrespective of the ordering.

4.3 Deletion Algorithm

The algorithm to delete a prefix p from the forwarding table is shown in Fig. 6. For
the prefix deletion it is needed to determine which TCAM contains the prefix p as
shown in line 1. Then the prefix can be deleted from the TCAM (line 2). Actually the
both steps (lines 1 and 2) can be performed together. The function delete_from() is
performed differently whether it operates on conventional TCAM or single-match
TCAM.

We manage contiguous free space for single-match TCAM, which causes one
memory movement on deletion. However, it does not need any other memory move-
ments because there is no ordering constraint on single-match TCAM. In case of
conventional TCAM the number of memory movements differs according to update
algorithms. Assuming free space is contiguous in the conventional TCAM, it also
requires at least one memory movement on deletion.

Delete(p: a prefix)
1. Find k such that p ∈ TCAMk
2. delete_from(p, TCAMk)

Fig. 6. Deletion Algorithm

5 Performance Evaluation

5.1 Simulation Environment

In our simulation we used routing tables from Route Views[9]. The update data
streams for 4 weeks were used for the experiment where the data of each week were
separately taken from different months. For experiment we needed to convert the
routing tables into forwarding tables and filter the update data streams for the for-
warding tables. Table 1 shows statistics on the forwarding table and the update data
streams.

Table 1. Statistics of Sampling Data

 Jul 2007 Aug 2007 Sep 2007 Oct 2007
No. of Prefixes 243511 244095 242635 248389
No. of Updates 164467 527204 787944 651771

The number of updates only includes the number of insertions and deletions but

not that of modifications of output port number. We evaluate the updating perform-
ance just by the number of memory movements incurred by updates, but the modifi-
cation of the output port does not cause the memory movements.

112 J. Kim and J. Kim

Table 2 shows the number of memory movements per update in various updating
schemes. Since there is no ordering constraint on single-match TCAM, the actual
number of memory movements incurred by each update may be 0. However, we
adopted a policy that free space of TCAM should be contiguous, so any deleted space
needs to be compacted to the contiguous free space. It causes almost one memory
movement per deletion on the average. In Table 2 the column represented by sTCAM
shows the number of memory movements in single-match TCAM. The other columns
show those for various updating schemes in conventional TCAM, which are summa-
rized in [4].

Table 2. Comparison of Memory Movements

TCAM Memory
 Movements

sTCAM
L-algorithm PLO_OPT CAO_OPT

Insertion 0
Deletion 1

7.27 4.1 1.02

5.2 Simulation Results

Table 3 shows the average number of memory movements per update in our scheme.
Each prefix in the forwarding table is randomly assigned to a single-match TCAM
unless that prefix is not disjoint with any prefix in the TCAM. If an update occurs in
single-match TCAM and the update is deletion, then the number of memory move-
ment is calculated as one. But, if the update is insertion, there is no memory move-
ment in single-match TCAM. In case of conventional TCAM, CAO_OPT was applied
to evaluating the number of memory movements. Note that the effective update cost
is cheaper in single-match TCAM than in conventional TCAM. In our scheme the
average number of memory movements per update ranges from 0.4902 to 0.5061,
which is half as large as CAO_OPT.

Table 3. Memory Movements per Update

Mem. Movements Jul 2007 Aug 2007 Sep 2007 Oct 2007
Moves/Update 0.4902 0.5061 0.4954 0.4965

Fig. 7 shows the number of prefixes initially contained in each TCAM. The single-

match TCAM is randomly chosen, so the prefixes can be evenly distributed among
the single-match TCAMs. The number of prefixes in conventional TCAM is very
small and merely 821, which is 0.33% of total prefixes. It implies that the conven-
tional TCAM which requires the ordering constraint can be constructed as very small
size in our architecture.

The good updating performance is due to the fact that most of updates are per-
formed in single-match TCAMs and very few updates are performed in conventional
TCAM. Fig. 8 shows the distribution of updates over TCAMs. Most of updates con-
centrate on single-match TCAMs and are evenly distributed among the single-match

 An Efficient IP Lookup Architecture with Fast Update 113

35,193 34,716 34,417 34,819
33,984

35,530
34,031

821

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

TCAM0 TCAM1 TCAM2 TCAM3 TCAM4 TCAM5 TCAM6 TCAM7

N
u

m
b

e
r

o
f P

re
fix

e
s

Fig. 7. The Number of Initial Prefixes in Each TCAM

12,447 12,085 12,084 11,837 11,649 12,548
11,208

11,984
11,540 11,511 11,415 11,187

11,991

10,677

156

148

0

5,000

10,000

15,000

20,000

25,000

30,000

TCAM0 TCAM1 TCAM2 TCAM3 TCAM4 TCAM5 TCAM6 TCAM7

N
um

be
r

of
 U

pd
at

es

Deletion

Insertion

Fig. 8. Insertions and Deletions

TCAMs as well. The numbers of insertions and deletions in conventional TCAM are
merely 156 and 148, which correspond to 0.19% and 0.18% of total insertions and
deletions respectively. The insertion ratio, 0.19%, is much smaller than the ratio of the
number of initial prefixes, 0.33%, in the conventional TCAM, which implies the rela-
tive portion of the conventional TCAM will not increase.

5.3 Discussion

The updating performance is related to two factors: the number of updates in the con-
ventional TCAM and the number of deletions in the single-match TCAMs. In case of
single-match TCAM the memory movements are only incurred by deletions while
both insertions and deletions incur memory movements in the conventional TCAM.

The smaller the number of updates in the conventional TCAM is, the better updat-
ing performance is achieved. The simulation results show that the number of updates
in the conventional TCAM is quite small. In the simulation a simple random assign-
ment strategy was applied to the insertion algorithm, however, it is possible to apply
various assignment strategies to the insertion algorithm. It is expected that the number
of prefixes and updates in the conventional TCAM will be affected by the assignment
strategies.

114 J. Kim and J. Kim

The number of single-match TCAMs may be controlled depending on cost and per-
formance. It is also expected that even if the number of single-match TCAMs is re-
duced, the performance will not be rapidly degraded because large amount of prefixes
can reside in small number of disjoint sets.

6 Conclusion

The conventional TCAM must satisfy some ordering constraint on prefixes for long-
est prefix matching. It results in low updating performance of the TCAM and even
lookup performance would be low due to overhead of a priority encoder.

Our novel architecture shows good performance in updating by introducing a new
type of TCAMs so called single-match TCAMs which do not need any priority en-
coder logic. By using an elaborated assignment strategy to insert a new prefix, each
single-match TCAM can maintain a disjoint set of prefixes and produce at most one
match. Since it does not require any ordering constraint on each single-match TCAM,
a newly inserted prefix can be located at any place within a single-match TCAM. It is
expected that lookup will also spend less time than in the conventional TCAM be-
cause it does not have a priority encoder.

Although the proposed architecture still requires a conventional TCAM, our simu-
lation result shows that the number of prefixes which reside in the conventional
TCAM is very small. As the result very few updates are performed in the conven-
tional TCAM and the average number of memory movements per update is as small
as about 0.5.

Novel assignment strategies for prefix insertion should be developed and evaluated
in further research. The memory movements on deletions in single-match TCAM can
be eliminated provided that the insertion hardware is enhanced. The design of the
hardware to eliminate memory movements also remains for future work.

References

1. Ruiz-Sanchez, M.A., Biersack, E.W., Dabbous, W.: Survey and Taxonomy of IP Address
Lookup Algorithms. IEEE Network 15, 8–23 (2001)

2. Chao, H.J., Liu, B.: High Performance Switches and Routers. Wiley-Interscience, Chiches-
ter (2007)

3. Labovitz, C., Malan, G.R., Jahanian, F.: Internet Routing Instability. IEEE/ACM TON 6,
515–528 (1998)

4. Shah, D., Gupta, P.: Fast Updating Algorithms for TCAMs. IEEE Micro 21, 36–47 (2001)
5. Wu, W., Shi, B., Wang, F.: Efficient location of free spaces in TCAM to improve router

per-formance. IJCS 18, 363–371 (2005)
6. Kobayashi, M., Murase, T., Kuriyama, A.: A Longest Prefix Match Search Engine for

Multi-Gigabit IP Processing. In: 2000 International Conf. on Communications, pp. 1360–
1364. IEEE Press, New Orleans (2000)

7. Ng, E., Lee, G.: Eliminating Sorting in IP Lookup Devices using Partitioned Table. In: 16th
IEEE International Conf. on Application-Specific Systems, Architecture and Processors
(ASAP), pp. 119–126. IEEE Press, Greece (2005)

8. Akhbarizadeh, M.J., Nourani, M., Cantrell, C.D.: Prefix Segregation Scheme for a TCAM-
Based IP Forwarding Engine. IEEE Micro 25, 48–63 (2005)

9. University of Oregon Route Views Project, http://www.routeviews.org/

	An Efficient IP Lookup Architecture with Fast Update Using Single-Match TCAMs
	Introduction
	Related Works
	Proposed IP Lookup Architecture
	Conventional TCAM-Based Architecture
	Design of the Proposed Architecture
	Single-Match TCAMs

	IP Lookup and Update Algorithms
	Search Algorithm
	Insertion Algorithm
	Deletion Algorithm

	Performance Evaluation
	Simulation Environment
	Simulation Results
	Discussion

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

